137 research outputs found

    Wisdom of Crowds Detects COVID-19 Severity Ahead of Officially Available Data

    Get PDF
    During the unfolding of a crisis, it is crucial to determine its severity, yet access to reliable data is challenging. We investigate the relation between geolocated Tweet Intensity of initial COVID-19 related tweet at the beginning of the pandemic across Italian, Spanish and USA regions and mortality in the region a month later. We find significant proportionality between early social media reaction and the cumulative number of COVID-19 deaths almost a month later. Our findings suggest that "the crowds" perceived the risk correctly. This is one of the few examples where the "wisdom of crowds" can be quantified and applied in practice. This can be used to create real-time alert systems that could be of help for crisis-management and intervention, especially in developing countries. Such systems could contribute to inform fast-response policy making at early stages of a crisis.Comment: 14 pages, 3 figures, 3 table

    Specialist hybrid models with asymmetric training for malaria prevalence prediction

    Get PDF
    Malaria is a common and serious disease that primarily affects developing countries and its spread is influenced by a variety of environmental and human behavioral factors; therefore, accurate prevalence prediction has been identified as a critical component of the Global Technical Strategy for Malaria from 2016 to 2030. While traditional differential equation models can perform basic forecasting, supervised machine learning algorithms provide more accurate predictions, as demonstrated by a recent study using an elastic net model (REMPS). Nevertheless, current short-term prediction systems do not achieve the required accuracy levels for routine clinical practice. To improve in this direction, stacked hybrid models have been proposed, in which the outputs of several machine learning models are aggregated by using a meta-learner predictive model. In this paper, we propose an alternative specialist hybrid approach that combines a linear predictive model that specializes in the linear component of the malaria prevalence signal and a recurrent neural network predictive model that specializes in the non-linear residuals of the linear prediction, trained with a novel asymmetric loss. Our findings show that the specialist hybrid approach outperforms the current state-of-the-art stacked models on an open-source dataset containing 22 years of malaria prevalence data from the city of Ibadan in southwest Nigeria. The specialist hybrid approach is a promising alternative to current prediction methods, as well as a tool to improve decision-making and resource allocation for malaria control in high-risk countries

    Content aware multi-focus image fusion for high-magnification blood film microscopy

    Get PDF
    Automated digital high-magnification optical microscopy is key to accelerating biology research and improving pathology clinical pathways. High magnification objectives with large numerical apertures are usually preferred to resolve the fine structural details of biological samples, but they have a very limited depth-of-field. Depending on the thickness of the sample, analysis of specimens typically requires the acquisition of multiple images at different focal planes for each field-of-view, followed by the fusion of these planes into an extended depth-of-field image. This translates into low scanning speeds, increased storage space, and processing time not suitable for high-throughput clinical use. We introduce a novel content-aware multi-focus image fusion approach based on deep learning which extends the depth-of-field of high magnification objectives effectively. We demonstrate the method with three examples, showing that highly accurate, detailed, extended depth of field images can be obtained at a lower axial sampling rate, using 2-fold fewer focal planes than normally required

    Detection of acute promyelocytic leukemia in peripheral blood and bone marrow with annotation-free deep learning

    Get PDF
    While optical microscopy inspection of blood films and bone marrow aspirates by a hematologist is a crucial step in establishing diagnosis of acute leukemia, especially in low-resource settings where other diagnostic modalities are not available, the task remains time-consuming and prone to human inconsistencies. This has an impact especially in cases of Acute Promyelocytic Leukemia (APL) that require urgent treatment. Integration of automated computational hematopathology into clinical workflows can improve the throughput of these services and reduce cognitive human error. However, a major bottleneck in deploying such systems is a lack of sufficient cell morphological object-labels annotations to train deep learning models. We overcome this by leveraging patient diagnostic labels to train weakly-supervised models that detect different types of acute leukemia. We introduce a deep learning approach, Multiple Instance Learning for Leukocyte Identification (MILLIE), able to perform automated reliable analysis of blood films with minimal supervision. Without being trained to classify individual cells, MILLIE differentiates between acute lymphoblastic and myeloblastic leukemia in blood films. More importantly, MILLIE detects APL in blood films (AUC 0.94 ± 0.04) and in bone marrow aspirates (AUC 0.99 ± 0.01). MILLIE is a viable solution to augment the throughput of clinical pathways that require assessment of blood film microscopy

    Whole-Sample Mapping of Cancerous and Benign Tissue Properties

    Full text link
    Structural and mechanical differences between cancerous and healthy tissue give rise to variations in macroscopic properties such as visual appearance and elastic modulus that show promise as signatures for early cancer detection. Atomic force microscopy (AFM) has been used to measure significant differences in stiffness between cancerous and healthy cells owing to its high force sensitivity and spatial resolution, however due to absorption and scattering of light, it is often challenging to accurately locate where AFM measurements have been made on a bulk tissue sample. In this paper we describe an image registration method that localizes AFM elastic stiffness measurements with high-resolution images of haematoxylin and eosin (H\&E)-stained tissue to within 1.5 microns. Color RGB images are segmented into three structure types (lumen, cells and stroma) by a neural network classifier trained on ground-truth pixel data obtained through k-means clustering in HSV color space. Using the localized stiffness maps and corresponding structural information, a whole-sample stiffness map is generated with a region matching and interpolation algorithm that associates similar structures with measured stiffness values. We present results showing significant differences in stiffness between healthy and cancerous liver tissue and discuss potential applications of this technique.Comment: Accepted at MICCAI201

    Affinity proteomics reveals elevated muscle proteins in plasma of children with cerebral malaria

    Get PDF
    Systemic inflammation and sequestration of parasitized erythrocytes are central processes in the pathophysiology of severe Plasmodium falciparum childhood malaria. However, it is still not understood why some children are more at risks to develop malaria complications than others. To identify human proteins in plasma related to childhood malaria syndromes, multiplex antibody suspension bead arrays were employed. Out of the 1,015 proteins analyzed in plasma from more than 700 children, 41 differed between malaria infected children and community controls, whereas 13 discriminated uncomplicated malaria from severe malaria syndromes. Markers of oxidative stress were found related to severe malaria anemia while markers of endothelial activation, platelet adhesion and muscular damage were identified in relation to children with cerebral malaria. These findings suggest the presence of generalized vascular inflammation, vascular wall modulations, activation of endothelium and unbalanced glucose metabolism in severe malaria. The increased levels of specific muscle proteins in plasma implicate potential muscle damage and microvasculature lesions during the course of cerebral malaria

    Optical mesoscopy, machine learning, and computational microscopy enable high information content diagnostic imaging of blood films

    Get PDF
    Automated image-based assessment of blood films has tremendous potential to support clinical haematology within overstretched healthcare systems. To achieve this, efficient and reliable digital capture of the rich diagnostic information contained within a blood film is a critical first step. However, this is often challenging, and in many cases entirely unfeasible, with the microscopes typically used in haematology due to the fundamental trade-off between magnification and spatial resolution. To address this, we investigated three state-of-the-art approaches to microscopic imaging of blood films which leverage recent advances in optical and computational imaging and analysis to increase the information capture capacity of the optical microscope: optical mesoscopy, which uses a giant microscope objective (Mesolens) to enable high-resolution imaging at low magnification; Fourier ptychographic microscopy, a computational imaging method which relies on oblique illumination with a series of LEDs to capture high-resolution information; and deep neural networks which can be trained to increase the quality of low magnification, low resolution images. We compare and contrast the performance of these techniques for blood film imaging for the exemplar case of Giemsa-stained peripheral blood smears. Using computational image analysis and shape-based object classification, we demonstrate their use for automated analysis of red blood cell morphology and visualization and detection of small blood-borne parasites such as the malarial parasite Plasmodium falciparum. Our results demonstrate that these new methods greatly increase the information capturing capacity of the light microscope, with transformative potential for haematology and more generally across digital pathology
    corecore